Происхождение атмосферы земли сдостаточным содержанием кислорода

Материалы студентам (рефераты, курсовые, дипломные) » Атмосфера. Современная климатическая ситуация на Земле » Происхождение атмосферы земли сдостаточным содержанием кислорода


В современной биосфере весь кислород, образовавшийся в результате фотосинтеза наземной растительности и океанического фитопланктона, расходуется на дыхание организмов, разлагающих органическое вещество, - бактерий, грибов и животных.

Заметное увеличение содержания свободного кислорода в атмосфере Земли 2,4 млрд лет назад, по-видимому, явилось результатом очень быстрого перехода от одного равновесного состояния к другому. Первый уровень соответствовал крайне низкой концентрации О2 — примерно в 100 000 раз ниже той, что наблюдается сейчас. Второй равновесный уровень, мог быть достигнут, при более высокой концентрации, составляющей не менее чем 0,005 от современной. Содержание кислорода между двумя этими уровнями характеризуется крайней неустойчивостью. Наличие подобной «бистабильности» позволяет понять, почему в атмосфере Земли было так мало свободного кислорода в течение, по крайней мере, 300 млн. лет после того, как его стали вырабатывать цианобактерии-«сине-зеленные водоросли».

Для того чтобы кислород начал накапливаться в атмосфере, хотя бы часть образованного в ходе фотосинтеза вещества должна быть выведена из круговорота — например, попасть в донные отложения и стать недоступной для бактерий, разлагающих его аэробно, то есть с потреблением кислорода.

Многие важные детали того, как установилось современное равновесие между поступлением кислорода в атмосферу и его изъятием, остаются невыясненными. Ведь заметное увеличение содержания кислорода, так называемое «Великое окисление атмосферы» (Great Oxidation), произошло только 2,4 млрд. лет назад, хотя точно известно, что осуществляющие оксигенный фотосинтез цианобактерии были уже достаточно многочисленны и активны 2,7 млрд. лет назад, а возникли они еще раньше — возможно, 3 млрд. лет назад. Таким образом, в течение, по крайней мере, 300 миллионов лет деятельность цианобактерий не приводила к увеличению содержания кислорода в атмосфере.

На раннем этапе свободный кислород, производимый цианобактериями (на фото), быстро связывался железом и водородом.

Предположение о том, что в силу каких-то причин вдруг произошло радикальное увеличение чистой первичной продукции (то есть прироста органического вещества, образованного в ходе фотосинтеза цианобактерий), критики не выдержало. Дело в том, что при фотосинтезе преимущественно потребляется легкий изотоп углерода 12С, а в окружающей среде возрастает относительное содержание более тяжелого изотопа 13С. Соответственно, донные отложения, содержащие органическое вещество, должны быть обеднены изотопом 13С, который скапливается в воде и идет на образование карбонатов. Однако соотношение 12С и 13С в карбонатах и в органическом веществе отложений остается неизменным, несмотря на радикальные изменения в концентрации кислорода в атмосфере. Значит, всё дело не в источнике О2, а в его, как выражаются геохимики, «стоке» (изъятии из атмосферы), который вдруг существенным образом сократился, что и привело к существенному увеличению количества кислорода в атмосфере.

Обычно считается, что непосредственно до «Великого окисления атмосферы» весь образующийся тогда кислород расходовался на окисление восстановленных соединений железа (а потом серы), которых на поверхности Земли было довольно много. В частности, тогда образовались так называемые «полосчатые железные руды». Но недавно Колин Гольдблатт, аспирант Школы наук об окружающей среде при Университете Восточной Англии (Норвич, Великобритания), совместно с двумя коллегами из того же университета пришли к выводу о том, что содержание кислорода в земной атмосфере может быть в одном из двух равновесных состояний: его может быть или очень мало — примерно в 100 тысяч раз меньше, чем сейчас, или уже довольно много (хотя с позиции современного наблюдателя мало) — не менее чем 0,005 от современного уровня.

В предлагаемой модели они учли поступление в атмосферу, как кислорода, так и восстановленных соединений, в частности обратив внимание на соотношение свободного кислорода и метана. Они отметили, что если концентрация кислорода превышает 0,0002 от современного уровня, то часть метана уже может окисляться бактериями метанотрофами согласно реакции: CH4 + 2O2 > CO2 + 2H2O.

Но остальной метан (а его довольно много, особенно при низкой концентрации кислорода) поступает в атмосферу.

Основной же механизм восстановления нарушенного равновесия — окисление метана в верхних слоях атмосферы гидроксильным радикалом (см. Колебания метана в атмосфере: человек или природа — кто кого, «Элементы», 06.10.2006). Гидроксильный радикал, как известно, образуется в атмосфере под действием ультрафиолетового излучения. Но если кислорода в атмосфере много (по меньшей мере, 0,005 от современного уровня), то в верхних ее слоях образуется озоновый экран, хорошо защищающий Землю от жестких ультрафиолетовых лучей и вместе с тем мешающий физико-химическому окислению метана.

Авторы приходят к несколько парадоксальному выводу о том, что само по себе существование оксигенного фотосинтеза не является достаточным условием ни для того, чтобы сформировалась богатая кислородом атмосфера, ни для того, чтобы возник озоновый экран.

А, по мнению ученых из Вашингтонского университета, с момента появления бактерий, способных производить свободный кислород с помощью фотосинтеза, до момента, когда накопленный свободный кислород стал преобладать в атмосфере Земли, прошло не менее 300 миллионов лет. Новая теория объясняет, почему так получилось.

Кислород, как известно, появился на Земле благодаря цианобактериям — водным микроорганизмам, живущим за счет фотосинтеза. Эти бактерии углекислый газ и воду превращают в углеводы и свободный кислород. Однако в течение первого времени подавляющая часть производимого бактериями кислорода связывалась химическими элементами, выбрасываемыми в атмосферу в результате бурной вулканической активности Земли, а также вступала в реакцию с железом, «импортированным» планетой в ходе интенсивных метеоритных бомбардировок, образуя ржавчину.

По мере того, как господствовавший в атмосфере метан разлагался ультрафиолетовым излучением Солнца, высвободившийся в ходе реакции водород покидал атмосферу и улетал в космос. Снижение доли водорода в атмосфере ускорило процесс окисления кислородом железа и других веществ, входящих в состав коры, привело к образованию скалистых пород и позволило в итоге значительно снизить выделение водорода земной корой и снизить темпы образования новых объемов метана.

По мнению аспиранта кафедры астрономии и астробиологии Вашингтонского университета Марка Клэра (Mark Claire), именно «железный» и «водородный» факторы сыграли решающую роль в наступлении «кислородной эры». Согласно построенным американскими учеными моделям, увеличение или уменьшение всего в пять раз железной составляющей земной коры, могло отсрочить или, напротив, приблизить наступление этой эпохи на миллиард лет. Соответственно, можно предположить, что причиной неработоспособности ранее применяемых для расчета времени накопления свободного кислорода моделей стала ошибка в определении исходных данных, касающихся присутствия железа в коре и на поверхности планеты.

Гипотеза о появлении кислорода в атмосфере основана, прежде всего, на изучении минеральных отложений, известных как полосчатые железорудные формации, ПЖФ (в них чередуются слои — полоски — оксида железа и кварца). Предполагается, что слои оксида железа в этих древних формациях не могли появиться иначе как в результате взаимодействия железа с кислородом, производившимся цианобактериями. Этим же объясняется и разрыв между появлением цианобактерий и заметным накоплением кислорода в атмосфере: кислород, вырабатывавшийся с помощью фотосинтеза цианобактериями, попав в атмосферу, мгновенно вступал в реакцию с растворенным в океане железом. В конечном итоге на дне океанов образовались огромные залежи гематитов (Fe2O3) и магнетитов (Fe3O4).

Однако некоторые ученые призывают не сбрасывать со счетов и другую возможность происхождения ПЖФ. В 90-е годы прошлого века немецкие исследователи обнаружили, что пурпурные бактерии — микроорганизмы, появившиеся еще раньше, чем цианобактерии — способны окислять железо без участия кислорода (в ходе анаэробного фотосинтеза, используемого ими для получения энергии из света и двуокиси углерода). А если так, то получается, что слои оксида железа в ПЖФ уже не могут выступать в качестве надежного доказательства наличия в древней атмосфере кислорода.

Недавние опыты, проведенные специалистами из Калифорнийского технологического института, немецкого Университета Тюбингена и канадского Университета Альберты, подтвердили тот факт, что слои оксида железа в ПЖФ на самом деле могли появляться в результате деятельности пурпурных бактерий. Клаудия Паскуэро (Claudia Pasquero) из Калифорнийского института определила даже толщину слоя пурпурных бактерий, который был бы необходим для полного окисления проходивших через него частиц железа. Ее расчеты показали, что она должна составлять около 17 метров (сейчас бактериальные слои такой толщины можно найти, например, в Черном море).

«Суть вопроса в том, как именно произошли ПЖФ, — говорит Диана Ньюман (Dianne Newman) из Калифорнийского института. — Считается, что ПЖФ отражают историю появления кислорода на Земле, но это может быть справедливо по отношению не ко всем из них».