Как уже отмечалось, органически-модифицированные слоистые силикаты являются перспективными нанонаполнителями, которые улучшают механические свойства ряда полимеров, в которых они были диспергированы. Многочисленные исследования подчеркивают уникальные комбинации физико-механических и термических свойств этих материалов уже при низком содержании (обычно менее 5 % масс.) неорганического компонента. К таким свойствам относятся повышенный модуль упругости Юнга [71-73], пониженная газопроницаемость [74, 75], улучшенные тепловые и огнеупорные свойства, высокая ионная проводимость [76, 77] и более низкий коэффициент теплового расширения [78]. Повышенные барьерные свойства нанокомпозиционных материалов обусловлены тем, что силикатные слои непроницаемы для молекул жидкости и газа. Поэтому коэффициент диффузии у нанокомпозитов глина-полимер уменьшается в несколько раз по сравнению с коэффициентом диффузии исходных полимеров. Увеличение размера силикатных пластин приводит к снижению проницаемости [79]. Коэффициент термического расширения также существенно уменьшается при добавлении даже небольшого количества глины (2-3 %) к полимерной матрице, так как жесткие слои силиката плохо деформируются и препятствуют тепловому расширению связанного с ними полимера. Отмечено, что нанокомпозиты, содержащие глину, имеют более высокую температуру разложения, чем чистый полимер, и, следовательно, являются более термоустойчивыми. Показано, что при содержании глины в полимерах около 5 % масс, наблюдается заметное снижение скорости горения, снижается тепловыделение и увеличивается зольность. Природа и процессы, происходящие при горении нанокомпозитов на основе полимеров и глин, подробно описаны обзоре [80].
Возможность регулирования электропроводности полиэтиленоксида (ПЭО) исследована в работе [79]. Нанокомпозит, полученный интеркаляцией из расплава ПЭО (40 масс. %) в Li-монтмориллонит (60 масс. %), демонстрирует повышенную стабильность ионной электропроводности при более низких температурах по сравнению с обычной смесью ПЭО/ Li-монтмориллонит. Такое улучшение свойств объясняется тем, что ПЭО не способен кристаллизоваться в интеркалированном состоянии, вследствие чего исчезают кристаллиты, имеющие непроводящую природу. Более высокая ионная электропроводность при комнатной температуре по сравнению с обычными электролитами делает эти нанокомпозиты перспективными электролитными материалами.
Способность к сорбции и ионному обмену нанокомпозитов на основе полиакриламидного геля и бентонита натрия изучена в работе [82].
Проведенный анализ показывает, что, интеркаляция полимеров в межслоевые пространства неорганических материалов - активно и плодотворно развивающееся направление. Интеркаляционная химия предоставляет практически неограниченные возможности для конструирования органо-неорганических нанокомпозитов гибридного типа.
В настоящее время обнаружены основные явления, сопутствующие процессам формирования таких материалов, выявлены основы их структурной организации и очерчены потенциальные свойства, особенно для использования в современных перспективных областях.
В то же время многие проблемы, касающиеся механизмов внедрения и взаимодействий «гость-хозяин», еще до конца непонятны. Не всегда очевидны кинетические и термодинамические закономерности, определяющие полноту заполнения базального пространства, как мономером, так и звеньями цепей полимера.
По сравнению с обычными неионогенными полимерами в случае полиэлектролитов появляется целая гамма дополнительных факторов (диссоциация, специфическое и неспецифическое связывание ионов, электростатические и гидрофобные взаимодействия и т.п.), которые могут резко влиять на межфазные явления при создании полимерных нанокомпозитов на основе слоистых силикатов и ионогенных водорастворимых полимеров. Именно сложность подобных нанокомпозитов обеспечивает их подчас уникальные свойства как материалов, предназначенных для использования в различных сферах, и естественно стимулирует и, несомненно, оправдывает интерес исследователей к проблеме синтеза и механизма образования этого класса полимерных соединений.
|