Основные концепции надежности и экологической безопасности объектов энергетики

Материалы студентам (рефераты, курсовые, дипломные) » Общественная экологическая экспертиза острый конфликт или поиск решения » Основные концепции надежности и экологической безопасности объектов энергетики


Другой оказывается постановка задачи оценки возможных последствий для окружающей среды при создании объектов ядерной энергетики. Здесь под экологической безопасностью понимается концепция, согласно которой при проектировании, строительстве, эксплуатации и снятии с эксплуатации АЭС, а также других объектов ЯТЦ предусматривается и обеспечивается сохранение региональных экосистем. При этом допускается некоторый экологический ущерб, риск которого не превосходит определенного (нормируемого) уровня. Этот риск минимален в период штатной эксплуатации АЭС, возрастает при возведении объекта и снятии его с эксплуатации и, особенно – в аварийных ситуациях. Необходимо учитывать влияние на окружающую среду всех основных факторов техногенного воздействия: радиационного, химического теплового (с учетом их возможного нелинейного взаимодействия). Следует иметь в виду и различные масштабы возможных последствий: локальный (тепловое пятно сброса подогретых вод в водоемы и водотоки), региональный (выброс радионуклидов), глобальный (рассеяние долгоживущих радионуклидов по биосферным каналам). Если же создается крупное водохранилище-охладитель, то, как в случае гидроэнергетического объекта, должна ставиться задача об экологически безопасном функционировании сложной ПТС (с учетом отмеченной специфики АЭС).

Аналогичный круг вопросов следует рассматривать при формулировании концепции экологической безопасности объектов теплоэнергетики: учет теплового и химического воздействия на окружающую среду, влияние водоемов-охладителей и т.п. Кроме того, для крупных ТЭС на твердом топливе (уголь, сланцы) возникают проблемы надежной и безопасной эксплуатации золоотвалов – сложных и ответственных грунтовых гидросооружений. И здесь надо ставить задачу о безопасном функционировании ПТС «ТЭС – окружающая среда».

Какое влияние оказывает на характер вредных выбросов в атмосферу вид топлива, используемый на тепловых электростанциях.

В качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепродукты, природный газ и реже древесину и торф. Основными компонентами горючих материалов являются углерод, водород и кислород, в меньших количествах содержится сера и азот, присутствуют также следы металлов и их соединений (чаще всего оксиды и сульфиды).

В тепло энергетике источником массированных атмосферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т.е. любые предприятия, работа которых связана с сжиганием топлива. В состав отходящих дымовых газов входят диоксид углерода, диоксид и триоксид серы и ряд других компонентов, поступление которых в воздушную среду наносит большой ущерб, как всем основным компонентам биосферы, так и предприятиям, объектам городского хозяйства, транспорту и населению городов.

Наряду с газообразными выбросами теплоэнергетика является «производителем» огромных масс твердых отходов; к ним относятся хвосты углеобогащения, золы и шлаки.

Отходы углеобогатительных фабрик содержат 55-60% SiO², 22-26% Al²O³, 5-12% Fe²O³, 0,5-1% CaO, 4-4,5% K²O и Na²O и до 5% С. Они поступают в отвалы, которые пылят, «дымят» и резко ухудшают состояние атмосферы и прилегающих территорий.

Жизнь на земле возникла в условия восстановительной атмосферы и только значительно позже, спустя примерно 2 млрд. лет, биота постепенно преобразовала восстановительную атмосферу в окислительную. При этом биота предварительно вывела из атмосферы различные вещества, в частности углекислый газ, образовав огромные залежи известняков и других углеродосодержащих соединений.

Сейчас наша техногенная цивилизация сформировала мощный поток восстановительных газов, в первую очередь вследствие сжигания ископаемого топлива в целях получения энергии. За 20 лет, с 1970 по 1990 год в мире было сожжено 450 млрд. баррелей нефти, 90 млрд. т угля, 11 трлн.куб.м газа.

Перейти на страницу: 1 2 3