Выбор метода очистки сточных вод от фенолов

Материалы студентам (рефераты, курсовые, дипломные) » Выбор метода очистки сточных вод от фенолов


Присутствие многовалентных катионов при поглощении органических оснований приводит к вытеснению органических веществ в раствор и резкому снижению емкости ионитов.

Для удаления фенола из сточных вод предложены различные иониты: сульфокатионы и сильноосновные аниониты; аниониты Permutit ES, Amberlite 410 , а также катионит CS-1 ; сильноосновной анионит Dowe-X-1 (327 кг/м 3 ), бифункциональный анионит LF (230 кг/м 3 ), слабоосновной анионит Wofatit M (47,8 кг/м 3 ), сульфоуголь Escasbo (58,9 кг/м 3 ) [21]. Степень очистки сточных вод от фенола обычно составляет 95 %. Предложено регенерировать иониты 0,5 Н раствором серной кислоты или 5-10 % раствором едкого кали.

Применение отечественных ионитов позволяет извлекать из сточных вод более 90-95 % фенолов. Аниониты АВ-17 и ЭДЭ-10П в ОН-форме сорбируют фенол из водных растворов в результате ионного обмена и молекулярной сорбции [11]. Применение сильноосновного анионита АВ-16 позволяет снижать концентрацию фенолов в воде от 450 до 22 мг/л [21]. Емкость анионита при этом достигает 70 % (масс.). Введение в раствор минеральных солей (NaCL и Na2SO4 ) уменьшает емкость анионитов. Следует отметить, что емкость анионита АВ-17 по фенолу постоянна при изменении рН в пределах 6-12, а анионит ЭДЭ-10П имеет максимальную емкость при рН=8,5 [5]. Поглощение фенола смолой КУ-21 пропорционально концентрации фенола в воде и значительно увеличивается при уменьшении крупности частиц смолы, что служит дополнительным подтверждением физического характера адсорбции фенола из воды катионитами. Положительные результаты получены при извлечении фенолов из сточных вод газосборников коксохимического производства с помощью сульфоугля [21].

Значительную поглотительную способность имеют аниониты – сополимеры, в частности продукты полимеризации и сополимеризации производных винилпиридина [5], способные к комплексообразованию с фенолами.

ЭЛЕКТРОСОРБЦИОННАЯ ОЧИСТКА

Успех применения электросорбционной тех­нологии во многом зависит от эксплутационных характеристик используемых сорбентов, к кото­рым предъявляются следующие требования: стойкость к окислению, химическая, механиче­ская, гидролитическая устойчивость, достаточ­ная сорбционная ёмкость, отсутствие загряз­няющих органических и неорганических приме­сей.

Традиционно в качестве адсорбентов ис­пользуют активированные угли.

При погружении пары пористых электродов (один является катодом, второй - анодом) в сточную воду происходят следующие процессы.

Неорганические катионы и анионы притяги­ваются к поверхности пористого электрода и адсорбируются под влиянием электрического поля. В некоторых случаях (например, при ад­сорбции ионов тяжелых металлов) катионы раз­ряжаются на поверхности катода (катодное вос­становление до чистых металлов) и таким обра­зом выводятся из сточной воды.

В стадии регенерации, при смене полярности электродов, адсорбированные анионы и катионы поступают в воду, сбрасываемую в дренаж.

Органические вещества разрушаются в ме­жэлектродном пространстве по трём механиз­мам:

1. Анодное окисление (разрушение в анодном пространстве)

2. Разрушение атомарным кислородом, обра­зующимся в анодном пространстве. Он час­тично вступает в окислительную реакцию с органическими веществами, ассоциирует в молекулы и растворяется в воде, а избыток удаляется в газообразном виде.

3. Окисление активным хлором, если в сточной воде содержатся хлорид-ионы. Водный рас­твор, содержащий хлор и продукты его гид­ролиза (CL2, HOCL, CL2O, CLO-, CLO3 -) являет­ся сильным окислителем [20].

Описанные реакции интенсифицируются с увеличением напряжения и силы тока.

Отработку технологии доочистки сточных вод от примесей методом электросорбции осу­ществлена на реальных сточных водах ОАО «Ярославская перевалочная нефтебаза». Сточные воды, усреднённый состав которых представлен в Таблице 5.

Первоначально сточные воды проходят пред­варительную очистку от нефтепродуктов и взвешенных загрязнений при пропускании их через систему, содержащую две нефтеловушки и отстойник. В противном случае загрязнения за­бивают поры, агломерируют между собой, обра­зуя в порах и на поверхности гранул угля «вто­ричную перегородку», которая участвует в про­цессе улавливания механических примесей, уве­личивает толщину слоя и препятствует прохож­дению жидкости.

Более высокая концентрация нефтепродуктов, по сравнению с приведённой выше, приводит к снижению эффективности и срока работы адсорбента вследствие блокирования «активных центров» и забивки пор.

Таблица 5. Состав сточных вод до и после очистки.

Состав сточ­ной воды

ПДС

Концентрация, МГ/ДМ3

Исходная сточная вода

Очищенная сточная вода

РН

Сульфаты

Хлориды

Железо общ

Фенолы

Нефтепродукты

СПАВ

Кальций

Натрий

6.5-8.5

29.4

16.8

0.19

0.004

0.264

0,1

41.4

12

7.46 – 7

60.3-41.3

452.4-340.1

6.4-3.2

0.23 - 0.0625

6.1-4,0

0,82-0,5

274,05-83,7

370-220

6.5

следы

10.2

0.24

0.005

0,064

0,02

19,64

5,5

Перейти на страницу: 3 4 5 6 7 8 9 10 11 12 13