Улавливание частиц при дисперсно-кольцевом режиме осуществляется за счет их осаждения на капли жидкости в результате турбулентной коагуляции и на поверхность пленки в результате турбулентной диффузии и турбулентной миграции. Кроме того, при необходимости повышения эффективности улавливания частиц возможно использование центробежной силы, возникающей при вращательно-поступательном движении двухфазного потока.
Основными преимуществами прямоточных центробежных сепараторов являются возможность обеспечения эффективного разделения в широком диапазоне расхода газа и концентрации дисперсной фазы (твердых или жидких аэрозольных частиц) при сравнительно небольшом гидравлическом сопротивлении, надежность и простота конструктивного оформления [3]. При примерно равных затратах энергии и производительности прямоточные центробежные сепараторы превосходят обычные циклоны по эффективности разделения (особенно для частиц с размерами менее 5v10 мкм [4]). По общей эффективности они близки к мокрым электрофильтрам, по фракционной v к мокрым пылеуловителям (для частиц размером 0.5v1.0 мкм v даже к тканевым фильтрам [5]). Для улавливания частиц размером менее 1 мкм частицы укрупняют за счет ввода пара и конденсации на поверхности частиц за счет охлаждения потока через стенку канала одновременно с осаждением под действием центробежной силы в дисперсно-кольцевом режиме.
Образовавшаяся пленка жидкости (конденсата) с твердыми частицами движется по стенке рабочей камеры, через кольцевой канал поступает в сепарационную камеру и в виде шлама удаляется из аппарата. Газ через переточный патрубок 2 поступает на следующую ступень очистки. Очищенный газ выводится из аппарата через выходной патрубок 7. В зависимости от начального размера частиц и требуемой степени очистки аппарат может состоять из нескольких ступеней, число рабочих камер на каждой ступени определяется расходом газа.
Качество разделения и гидравлическое сопротивление центробежных сепараторов зависят от диаметра канала, скорости и степени закрутки потока, а также конструктивного оформления трех основных зон, обеспечивающих, соответственно, формирование закрученного потока, сепарацию и выделение дисперсной фазы. Диаметр сепаратора определяется производительностью и требуемой эффективностью разделения (для обеспечения высокой эффективности применяются элементы диаметром 30v80 мм). Наиболее существенное влияние на величину уноса дисперсной фазы из аппарата и, соответственно, эффективность разделения оказывает скорость газа. Закрутка потока газа может быть достигнута тремя основными способами (или их сочетанием) [7]: тангенциальным подводом газа, применением осевых закручивающих устройств (лопаточных, розеточных, шнековых и др.) и вращением самого сепаратора (в процессах разделения практически не используется).
Внедрение в промышленность аппаратов, работающих в дисперсно-кольцевом режиме, сдерживается недостаточной изученностью протекающих в них процессов. Сложность моделирования и расчета высокоинтенсивного межфазного взаимодействия в газо-жидкостном дисперсно-кольцевом турбулентном осевом или закрученном потоке обусловлена, в первую очередь, двойственной детерминированно-стохастической природой большинства процессов, связанных с турбулентным пульсационным движением сплошной и дисперсной фаз. Традиционный подход к изучению таких систем базируется на фундаментальных законах классической механики, механики жидкости и газа, физической химии и термодинамики. Однако при моделировании тепло- или массообменных процессов и аппаратов с интенсивным взаимодействием фаз, учитывая неоднородность структуры потоков и неравномерность распределения параметров, необходимо наряду с детерминированными использовать вероятностно-стохастические методы и модели. В общем случае должны учитываться следующие случайные факторы: полидисперсный состав дисперсной фазы (твердых или жидких частиц) и его изменение во времени, стохастический характер движения и различное время пребывания частиц в объеме аппарата, флуктуации относительных скоростей фаз. Экспериментальная часть
При исследовании дисперсно-кольцевого режима в пленочном аппарате скорость газа по сечению трубы измерялась трубкой Пито-Прандтля, температура газа v термопарами. Исследовались трубы с гладкой и шероховатой поверхностью. Шероховатая поверхность создавалась спиралью из проволоки диаметром 3 мм на внутренней поверхности трубы с зазором 0.4v0.8 мм, расстояние между витками проволоки 30 мм. Расход жидкости варьировался от 1 до 15 м3/ч, скорость газа v от 6 до 50 м/с. Измерение средней толщины пленки жидкости осуществлялось методом отсечки питания. Минимальная и максимальная толщина пленки определялась при помощи контактной иглы, свободный конец которой соединялся с микровинтом и прозрачным капилляром. Измерение перепада давления в трубе при сильных взаимодействиях осуществлялось пьезометрическими трубками, расход воздуха определялся при помощи нормальной диафрагмы.
Перейти на страницу: 1 2 3 4 5 6 7 8
|