Рассмотрены способы преобразования низкопотенциальной энергии внешней среды для получения мощности на силовом валу, высокопотенциальной теплоты, "холода" и реактивной тяги. В них используется процесс последовательного присоединения дополнительных масс, который реализуется в эжекторных сопловых аппаратах газотурбинных двигателей. В отличие от известных преобразователей этой даровой энергии (ветровых, солнечных), эффективность её преобразования в предлагаемых ГТД не зависит от географических, временных и погодных условий, а их удельная мощность значительно выше и сопоставима с удельной мощностью двигателей традиционных схем. Они могут работать, используя разомкнутый цикл и рабочее тело - атмосферный воздух, а также по замкнутому циклу в воздухонезависимых системах. Выработка необходимого вида энергии бестопливными системами на базе таких ГТД осуществляется непосредственно в местах её потребления. Отсутствие в них материалов и устройств, связанных с использованием топлива, повышает надёжность работы, упрощает конструкцию, технологию, снижает затраты и делает производство этих систем возможным на большинстве машиностроительных предприятий, а эксплуатацию экологичной и безопасной.
С каждым годом сокращаются запасы углеводородного сырья, растёт энергопотребление, ухудшается экология, а известные технологии использования возобновляемых экологически чистых источников энергии, в т. ч. атмосферы, не эффективны.
Неравномерный нагрев газов, сжатых под действием гравитации, вызывает изменения давления и нарушает равновесное состояние атмосферы, при восстановлении которого потенциальная и тепловая энергия воздушных масс преобразуются в кинетическую. В результате этого стохастического природного процесса энергия атмосферы становится доступной для использования в ветродвигателях, выполняющих механическую работу без потребления кислорода и выработки продуктов сгорания. Их недостатки - низкая плотность энергии на единицу рабочей площади и неуправляемость процесса. Однако нарушать равновесное состояние атмосферы для преобразования потенциальной энергии воздушных масс в кинетическую можно и за счёт управляемых локальных воздействий, например, в эжекторных устройствах. Восстанавливая равновесное состояние, нарушаемое в эжекторном насадке активной струей рабочего тела, атмосфера совершает механическую работу. Её объём зависит от величины, но в большей степени от способа воздействия, а также параметров эжекторных устройств и сферы их применения. В эжекционном процессе - параллельного присоединения к стационарной реактивной струе тяга увеличивается без дополнительных затрат энергии топлива за счёт «неуравновешенной силы внешнего давления на входной раструб (заборник) эжектора, появление которой обусловлено понижением давления на стенках раструба при втекании в него эжектируемого воздуха» [1] (это утверждение Г.Н. Абрамовича констатирует факт управляемого использования энергии атмосферы для выполнения работы). Показатели эффективности процесса - КПД и коэффициент присоединения дополнительных масс m (равный отношению присоединяемой воздушной массы к массе активной струи) низкие из-за турбулентного смешения и трения, уменьшающих скорость активной струи Caj. В результате тяга и кинетическая энергия реактивной массы увеличиваются незначительно.
В другом процессе - последовательного присоединения (имеющего иную физическую основу, которая не обязательно связана со смешением объединяемых масс) воздействие пульсирующей активной струи создаёт периодическое разрежение в эжекторном насадке, при котором за счёт неуравновешенной силы атмосферного давления, вслед за каждым импульсом активной струи ускоряется воздух. Процесс может происходить практически без смешения объединяемых масс и уменьшения скорости активной струи, но лишь в узком диапазоне величин и соотношений основных параметров: расчётной частоты, формы, длительности и скорости газовой массы импульсов активной струи, скорости набегающего потока, а также конструктивных параметров эжекторного устройства. Только при их оптимальном значении присоединение происходит за счёт последовательного втекания воздушных масс вслед за газовой массой импульсов, при котором практически отсутствует их выталкивание из эжекторного насадка газовой массой следующего импульса и турбулентное смешение разделённых газовых масс, уменьшающие эффективность управляемого преобразования энергии атмосферы.
Перейти на страницу: 1 2 3 4 5 6
|