Сумму эффективных температур рассчитывают по формуле
X = (T – C) · t,
где X – сумма эффективных температур; T – температура окружающей среды, С – температура порога развития и t – число часов или дней с температурой, превышающей порог развития.
Зная средний ход температур в каком-либо районе, можно рассчитать появление определенной фазы или число возможных генераций интересующего нас вида. Так, в климатических условиях Северной Украины может выплодиться лишь одна генерация бабочки яблонной плодожорки, а на юге Украины – до трех, что необходимо учитывать при разработке мер защиты садов от вредителей. Сроки цветения растений зависят от того, за какой период они набирают сумму необходимых температур. Для зацветания мать-и-мачехи под Петербургом, например, сумма эффективных температур равна 77, кислицы – 453, земляники – 500, а желтой акации – 700 °C.
Сумма эффективных температур, которую нужно набрать для завершения жизненного цикла, часто ограничивает географическое распространение видов. Например, северная граница лесной растительности приблизительно совпадает с июльскими изотермами +(10–12) °С. Севернее тепла для развития деревьев уже не хватает, и зона лесов сменяется безлесными тундрами.
Расчеты эффективных температур необходимы в практике сельского и лесного хозяйства, при борьбе с вредителями, интродукции новых видов и т. п. Они дают первую, приближенную основу для составления прогнозов. Однако на распространение и развитие организмов влияет множество других факторов, поэтому в действительности температурные зависимости оказываются более сложными.
Температурная компенсация.
Ряд пойкилотермных видов, обитающих в условиях переменных температур, развивает возможность поддерживать более или менее постоянный уровень обмена веществ в довольно широких пределах изменения температуры тела. Это явление называется температурной компенсацией и происходит в основном за счет биохимических адаптаций. Например, у моллюсков на побережье Баренцева моря, таких, как брюхоногие литторины (Littorina littorea) и двустворчатые мидии (Mytilus edulis), интенсивность обмена, оцениваемая по потреблению кислорода, почти не зависит от температуры в тех пределах, с которыми моллюски встречаются ежедневно во время приливов и отливов. В весенне-летний период этот диапазон достигает более 20 °C (от +6 до +30 °C), и в холодной воде их метаболизм столь же интенсивен, как в теплом воздухе. Это обеспечивается действием ферментов, которые при понижении температуры меняют свою конфигурацию таким образом, что возрастает их сродство к субстрату и реакции протекают более активно.
Другие способы температурной компенсации связаны с заменой действующих ферментов сходными по функции, но работающими при иной температуре (изоферментами). Такие адаптации требуют времени, поскольку происходит инактивация одних генов и включение других с последующими процессами сборки белков. Подобная акклимация
(сдвиг температурного оптимума) лежит в основе сезонных перестроек, а также обнаруживается у представителей широко распространенных видов в разных по климату частях ареала. Например, у одного из видов бычков из Атлантического океана в низких широтах Q10 имеет невысокое значение, а в холодных северных водах возрастает при низких температурах и снижается при средних. Результатом этих компенсаций является то, что животные могут поддерживать относительное постоянство активности, так как даже незначительное повышение температуры у критических точек усиливает обменные процессы. Температурные компенсации для каждого вида возможны лишь в определенном диапазоне температур, но не выше и не ниже этой области.
Перейти на страницу: 1 2 3 4 5 6 7
|