Скорость конденсации и диаметр капли для стационарного случая (при постоянной температуре и давлении) и идеального пара можно рассчитать по уравнению Максвелла. При охлаждении парогазовой смеси, движущейся вдоль более холодной поверхности, происходит перенос тепла через прилегающий к ней пограничный слой газа, а затем и конденсация. Если в смеси имеется дисперсная фаза (жидкие или твердые аэрозольные частицы), то конденсация происходит не только на поверхности канала, но и на частицах. Соотношение между массами конденсата, образующегося на частицах и на охлаждаемой поверхности канала, зависит от величины пересыщения и концентрации в смеси дисперсной фазы. При большом количестве центров конденсации в потоке на них конденсируется значительно большее количество пара, чем на стенках канала [22]. Так, при численной концентрации частиц 108 м-3 на них образуется 99 % всего конденсата.
Расчеты и экспериментальные исследования показывают, что конденсационное укрупнение позволяет в обычных условиях увеличить размер частиц от 1 до 10v15 мкм. Конечный размер частиц в значительной степени определяется величиной поверхностной плотности теплового потока и при скорости газа более 30 м/с и численной концентрации более 1012 м-3 слабо зависит от скорости и начального размера, так как в этом случае объем конденсата, образовавшегося на каждой частице, гораздо больше первоначального объема самой частицы. Конденсационное укрупнение частиц в парогазовом потоке целесообразно проводить при сравнительно низких концентрациях дисперсной фазы (до 1012 м-3), высоких тепловых нагрузках и малых скоростях потока (до 30 м/с). При более высоких концентрациях небольшой объем жидкой фазы на каждой частице не может привести к ее ощутимому укрупнению. Увеличение скорости потока приводит к росту энергозатрат на проведение процесса при незначительном увеличении конечного размера частиц.
Механизм осаждения частиц на стенку канала в конденсационном центробежном сепараторе аналогичен другим прямоточным центробежным сепараторам, поэтому основные закономерности процесса аналогичны.
Экспериментально установлено, что в общем случае увеличение осевой составляющей скорости потока снижает общую эффективность сепарации жидкой фазы, а тангенциальной v повышает, однако чрезмерное ее увеличение может привести к срыву жидкой пленки с поверхности осаждения и вторичному уносу. В целом движение восходящего или нисходящего закрученного двухфазного потока отличается широким диапазоном допустимых нагрузок по газу и жидкости (по сравнению с осевым), при этом брызгоунос определяется полной скоростью газа на границе раздела фаз.
На рис. 5 представлены графики экспериментальной зависимости величины брызгоуноса от средней осевой скорости парогазового потока при различных значениях угла закрутки потока. Для каждой кривой характерно наличие оптимальной скорости потока, при которой унос минимален.
Ее значение зависит от угла закрутки и в исследованных интервалах изменения параметров лежит в пределах от 14 до 22 м/с, что в целом соответствует обычным значениям для центробежных сепараторов, в которых наивысшая степень очистки (и, соответственно, минимальный унос) достигается при значениях rгw2 от 150 до 600 кг/(мЧс2) и скоростях газа от 10 до 20 м/с (для циклонов диаметром до 200 мм v до 50 м/с). При меньшей скорости дисперсная фаза не успевает отсепарироваться, а при больших увеличивается вторичный унос v вследствие увеличения полной скорости потока на границе раздела фаз происходит срыв пленки конденсата. При скоростях, существенно больших оптимальных значений (выше 35v40 м/с), величина уноса уже практически не зависит от угла закрутки потока, что, видимо, свидетельствует о срыве пленки исключительно турбулентными пульсациями газа.
Перейти на страницу: 1 2 3 4 5
|